LogoLogo
👋 Get in touch⭐️ GitHub
  • Welcome
  • Getting Started
    • Why Superlinked?
    • Setup Superlinked
    • Basic Building Blocks
  • Run in Production
    • Overview
    • Setup Superlinked Server
      • Configuring your app
      • Interacting with app via API
    • Supported Vector Databases
      • Redis
      • Mongo DB
      • Qdrant
  • Concepts
    • Overview
    • Combining Multiple Embeddings for Better Retrieval Outcomes
    • Dynamic Parameters/Query Time weights
  • Reference
    • Overview
    • Changelog
    • Components
      • Schema
        • Id Schema Object
        • Event Schema
        • Event Schema Object
        • Schema Object
        • Schema
      • Parser
        • Json Parser
        • Dataframe Parser
        • Data Parser
      • Dag
        • Period Time
      • Storage
        • Vector Database
        • Qdrant Vector Database
        • Mongo Db Vector Database
        • Redis Vector Database
        • In Memory Vector Database
      • Space
        • Custom Space
        • Space Field Set
        • Input Aggregation Mode
        • Text Similarity Space
        • Space
        • Categorical Similarity Space
        • Recency Space
        • Number Space
        • Exception
        • Has Space Field Set
        • Image Space Field Set
        • Image Space
      • Query
        • Query Mixin
        • Query Param Value Setter
        • Query Weighting
        • Space Weight Param Info
        • Clause Params
        • Query Descriptor
        • Query
        • Param Evaluator
        • Param
        • Result
        • Query Filter Information
        • Query Filter Validator
        • Natural Language Query Param Handler
        • Query Filters
        • Query Param Information
        • Nlq Param Evaluator
        • Query Vector Factory
        • Nlq Pydantic Model Builder
        • Typed Param
        • Query Clause
        • Nlq
          • Nlq Compatible Clause Handler
          • Nlq Handler
          • Nlq Clause Collector
          • Exception
          • Suggestion
            • Query Suggestions Prompt Builder
            • Query Suggestion Model
          • Param Filler
            • Query Param Model Validator Info
            • Nlq Annotation
            • Query Param Model Builder
            • Query Param Prompt Builder
            • Query Param Model Validator
            • Templates
        • Query Clause
          • Hard Filter Clause
          • Space Weight Map
          • Looks Like Filter Clause
          • Similar Filter Clause
          • Base Looks Like Filter Clause
          • Single Value Param Query Clause
          • Radius Clause
          • Select Clause
          • Overriden Now Clause
          • Nlq System Prompt Clause
          • Looks Like Filter Clause Weights By Space
          • Limit Clause
          • Weight By Space Clause
          • Nlq Clause
          • Query Clause
        • Predicate
          • Binary Op
          • Binary Predicate
          • Query Predicate
        • Query Result Converter
          • Default Query Result Converter
          • Query Result Converter
          • Serializable Query Result Converter
      • Executor
        • Executor
        • Exception
        • Query
          • Query Executor
        • Rest
          • Rest Handler
          • Rest Configuration
          • Rest Descriptor
          • Rest Executor
        • Interactive
          • Interactive Executor
        • In Memory
          • In Memory Executor
      • App
        • App
        • Online
          • Online App
        • Rest
          • Rest App
        • Interactive
          • Interactive App
        • In Memory
          • In Memory App
      • Source
        • Interactive Source
        • Data Loader Source
        • In Memory Source
        • Source
        • Rest Source
        • Types
      • Index
        • Index
        • Effect
        • Util
          • Event Aggregation Effect Group
          • Aggregation Effect Group
          • Aggregation Node Util
          • Effect With Referenced Schema Object
          • Event Aggregation Node Util
      • Registry
        • Superlinked Registry
        • Exception
  • Recipes
    • Overview
    • Multi-Modal Semantic Search
      • Hotel Search
    • Recommendation System
      • E-Commerce RecSys
  • Tutorials
    • Overview
    • Semantic Search - News
    • Semantic Search - Movies
    • Semantic Search - Product Images & Descriptions
    • RecSys - Ecommerce
    • RAG - HR
    • Analytics - User Acquisition
    • Analytics - Keyword Expansion
  • Help & FAQ
    • Logging
    • Support
    • Discussion
  • Policies
    • Terms of Use
    • Privacy Policy
Powered by GitBook
On this page
  • Ingest an entry
  • Query your system
  • Load data from file(s)
  • See available data loaders
  • Trigger the data load

Was this helpful?

Edit on GitHub
  1. Run in Production
  2. Setup Superlinked Server

Interacting with app via API

Once you have your application up and running, you can start loading data and querying the API. Here's a step-by-step guide on how to do it:

Ingest an entry

  1. Data Ingestion: You can test data ingestion by making a POST request to the /api/v1/ingest/your_schema endpoint. Here's an example using curl:

    curl -X POST \
        'http://localhost:8080/api/v1/ingest/your_schema' \
        --header 'Accept: */*' \
        --header 'Content-Type: application/json' \
        --data-raw '{
            "id": "your_id",
            ...
        }'

    Note: The current example will not work, please change the request body as your schema requires it.

Query your system

  1. Query the API: After ingesting data, you can query the API by making a POST request to the /api/v1/search/query endpoint. Here's an example using curl:

    curl -X POST \
        'http://localhost:8080/api/v1/search/query' \
        --header 'Accept: */*' \
        --header 'Content-Type: application/json' \
        --header 'x-include-metadata: true' \
        --data-raw '{
            "query_text": "your_search_text"
        }'

    Note: The x-include-metadata: true header will include additional debug information about your query, such as search vector, weights and evaluated NLQ outputs.

Load data from file(s)

See available data loaders

To see what data loaders are available, send a request to the endpoint below:

curl 'http://localhost:8080/data-loader/'

Successful response (200 OK):

{
    "result": [
        "<NAME_OF_YOUR_DATA_LOADER>": "DataLoaderConfig(path='https://path-to-your-file.csv', format=<DataFormat.CSV: 2>, name=None, pandas_read_kwargs='{sep: ;}')"
    ]
}

Trigger the data load

To initiate the data load, invoke its endpoint. This will spawn an asynchronous task DataLoaderSource by its name as defined in your api.py. To trigger the endpoint, simply send a request with curl as shown below. The response should be 202 Accepted. If the name you provided is not found in the system, a 404 NOT FOUND will be returned. See the logs to check the result of that task.

curl -X POST 'http://localhost:8080/data-loader/<NAME_OF_YOUR_DATA_LOADER>/run'

Successful response (200 OK):

{
    "result": "Background task successfully started with name: <NAME_OF_YOUR_DATA_LOADER>",
}
PreviousConfiguring your appNextSupported Vector Databases

Last updated 3 months ago

Was this helpful?

The keys are the available data loader names that you can use for the rest of the data loader endpoints below. To see how these names are constructed and can be altered, read the .

docs here