LogoLogo
👋 Get in touch⭐️ GitHub
  • Welcome
  • Getting Started
    • Why Superlinked?
    • Setup Superlinked
    • Basic Building Blocks
  • Run in Production
    • Overview
    • Setup Superlinked Server
      • Configuring your app
      • Interacting with app via API
    • Supported Vector Databases
      • Redis
      • Mongo DB
      • Qdrant
  • Concepts
    • Overview
    • Combining Multiple Embeddings for Better Retrieval Outcomes
    • Dynamic Parameters/Query Time weights
  • Reference
    • Overview
    • Changelog
    • Components
      • Schema
        • Id Schema Object
        • Event Schema
        • Event Schema Object
        • Schema Object
        • Schema
      • Parser
        • Json Parser
        • Dataframe Parser
        • Data Parser
      • Dag
        • Period Time
      • Storage
        • Vector Database
        • Qdrant Vector Database
        • Mongo Db Vector Database
        • Redis Vector Database
        • In Memory Vector Database
      • Space
        • Custom Space
        • Space Field Set
        • Input Aggregation Mode
        • Text Similarity Space
        • Space
        • Categorical Similarity Space
        • Recency Space
        • Number Space
        • Exception
        • Has Space Field Set
        • Image Space Field Set
        • Image Space
      • Query
        • Query Mixin
        • Query Param Value Setter
        • Query Weighting
        • Space Weight Param Info
        • Clause Params
        • Query Descriptor
        • Query
        • Param Evaluator
        • Param
        • Result
        • Query Filter Information
        • Query Filter Validator
        • Natural Language Query Param Handler
        • Query Filters
        • Query Param Information
        • Nlq Param Evaluator
        • Query Vector Factory
        • Nlq Pydantic Model Builder
        • Typed Param
        • Query Clause
        • Nlq
          • Nlq Compatible Clause Handler
          • Nlq Handler
          • Nlq Clause Collector
          • Exception
          • Suggestion
            • Query Suggestions Prompt Builder
            • Query Suggestion Model
          • Param Filler
            • Query Param Model Validator Info
            • Nlq Annotation
            • Query Param Model Builder
            • Query Param Prompt Builder
            • Query Param Model Validator
            • Templates
        • Query Clause
          • Hard Filter Clause
          • Space Weight Map
          • Looks Like Filter Clause
          • Similar Filter Clause
          • Base Looks Like Filter Clause
          • Single Value Param Query Clause
          • Radius Clause
          • Select Clause
          • Overriden Now Clause
          • Nlq System Prompt Clause
          • Looks Like Filter Clause Weights By Space
          • Limit Clause
          • Weight By Space Clause
          • Nlq Clause
          • Query Clause
        • Predicate
          • Binary Op
          • Binary Predicate
          • Query Predicate
        • Query Result Converter
          • Default Query Result Converter
          • Query Result Converter
          • Serializable Query Result Converter
      • Executor
        • Executor
        • Exception
        • Query
          • Query Executor
        • Rest
          • Rest Handler
          • Rest Configuration
          • Rest Descriptor
          • Rest Executor
        • Interactive
          • Interactive Executor
        • In Memory
          • In Memory Executor
      • App
        • App
        • Online
          • Online App
        • Rest
          • Rest App
        • Interactive
          • Interactive App
        • In Memory
          • In Memory App
      • Source
        • Interactive Source
        • Data Loader Source
        • In Memory Source
        • Source
        • Rest Source
        • Types
      • Index
        • Index
        • Effect
        • Util
          • Event Aggregation Effect Group
          • Aggregation Effect Group
          • Aggregation Node Util
          • Effect With Referenced Schema Object
          • Event Aggregation Node Util
      • Registry
        • Superlinked Registry
        • Exception
  • Recipes
    • Overview
    • Multi-Modal Semantic Search
      • Hotel Search
    • Recommendation System
      • E-Commerce RecSys
  • Tutorials
    • Overview
    • Semantic Search - News
    • Semantic Search - Movies
    • Semantic Search - Product Images & Descriptions
    • RecSys - Ecommerce
    • RAG - HR
    • Analytics - User Acquisition
    • Analytics - Keyword Expansion
  • Help & FAQ
    • Logging
    • Support
    • Discussion
  • Policies
    • Terms of Use
    • Privacy Policy
Powered by GitBook
On this page
  • In a notebook
  • As a script
  • Run the example

Was this helpful?

Edit on GitHub
  1. Getting Started

Setup Superlinked

PreviousWhy Superlinked?NextBasic Building Blocks

Last updated 3 months ago

Was this helpful?

In a notebook

Install the superlinked library:

%pip install superlinked

As a script

Ensure your python version is at least 3.10.x but not newer than 3.12.x.

$> python -V
Python 3.10.9

If your python version is not >=3.10 and <=3.12 you might use to install it.

Upgrade pip and install the superlinked library.

$> python -m pip install --upgrade pip
$> python -m pip install superlinked

Run the example

First run will take slightly longer as it has to download the embedding model.

import json
import os

from superlinked import framework as sl


class Product(sl.Schema):
    id: sl.IdField
    description: sl.String
    rating: sl.Integer


product = Product()

description_space = sl.TextSimilaritySpace(
    text=product.description, model="Alibaba-NLP/gte-large-en-v1.5"
)
rating_space = sl.NumberSpace(
    number=product.rating, min_value=1, max_value=5, mode=sl.Mode.MAXIMUM
)
index = sl.Index([description_space, rating_space], fields=[product.rating])


# Define your query and parameters to set them directly at query-time
# or let an LLM fill them in for you using the `natural_language_query` param.
# Don't forget to set your OpenAI API key to unlock this feature.
query = (
    sl.Query(
        index,
        weights={
            description_space: sl.Param("description_weight"),
            rating_space: sl.Param("rating_weight"),
        },
    )
    .find(product)
    .similar(
        description_space,
        sl.Param(
            "description_query",
            description="The text in the user's query that refers to product descriptions.",
        ),
    )
    .select_all()
    .limit(sl.Param("limit"))
    .with_natural_query(
        sl.Param("natural_language_query"),
        sl.OpenAIClientConfig(api_key=os.environ["OPEN_AI_API_KEY"], model="gpt-4o")
    )
)

# Run the app in-memory (server & Apache Spark executors available too!).
source = sl.InMemorySource(product)
executor = sl.InMemoryExecutor(sources=[source], indices=[index])
app = executor.run()


# Ingest data into the system - index updates and other processing happens automatically.
source.put([
    {
        "id": 1,
        "description": "Budget toothbrush in black color. Just what you need.",
        "rating": 1,
    },
    {
        "id": 2,
        "description": "High-end toothbrush created with no compromises.",
        "rating": 5,
    },
    {
        "id": 3,
        "description": "A toothbrush created for the smart 21st century man.",
        "rating": 3,
    },
])

result = app.query(query, natural_query="best toothbrushes", limit=1)

# Examine the extracted parameters from your query
print(json.dumps(result.metadata, indent=2))

# The result is the 5-star rated product.
sl.PandasConverter.to_pandas(result)
pyenv