Text Similarity Space
Functions
chunk(text: superlinked.framework.common.schema.schema_object.String, chunk_size: int | None = None, chunk_overlap: int | None = None, split_chars_keep: list[str] | None = None, split_chars_remove: list[str] | None = None) ‑> superlinked.framework.common.dag.chunking_node.ChunkingNode
: Create smaller chunks from the given text, a String SchemaFieldObject. It is helpful when you search for more granular information in your text corpus. It is recommended to try different chunk_sizes to find what fits best your use-case. Chunking respects word boundaries.
Classes
TextSimilaritySpace(text: superlinked.framework.common.schema.schema_object.String | superlinked.framework.common.dag.chunking_node.ChunkingNode | list[superlinked.framework.common.schema.schema_object.String | superlinked.framework.common.dag.chunking_node.ChunkingNode], model: str, cache_size: int = 10000, model_cache_dir: pathlib.Path | None = None)
: A text similarity space is used to create vectors from documents in order to search in them later on. We only support (SentenceTransformers)[https://www.sbert.net/] models as they have finetuned pooling to encode longer text sequences most efficiently.
Last updated