Vector space framework for transforming multimodal data into embeddings with specialized spaces for text, images, categories, numbers, and temporal data
The Space System provides the foundation for creating vector embeddings from different data types, offering specialized space implementations for text, images, categorical data, numbers, and temporal information. Spaces define how raw data is transformed into vector representations that enable semantic similarity calculations and multi-modal search.For information about how spaces integrate with data schemas, see Schema System. For index creation and querying, see Index and Query System.
# Image space with field setimage_field_set = sl.ImageSpaceFieldSet( image_data=product.image, metadata=product.description)image_space = sl.ImageSpace( image=image_field_set, model="clip-vit-base-patch32")# Text space with aggregationtext_field_set = sl.SpaceFieldSet( text=product.description, aggregation_mode=sl.InputAggregationMode.MEAN)# Custom space with complex field mappingcustom_field_set = sl.SpaceFieldSet( primary_field=product.description, secondary_field=product.category, aggregation_mode=sl.InputAggregationMode.CONCATENATE)
Integration with Framework Components
Spaces integrate seamlessly with other Superlinked components to create complete vector search systems.
Multi-Modal Support: Handle text, images, numbers, categories, and time data
Semantic Similarity: Advanced similarity calculations for each data type
Flexible Configuration: Customizable space parameters for optimal performance
Aggregation Strategies: Multiple ways to handle multi-value inputs
Custom Implementations: Extensible architecture for specialized embeddings
Spaces define how different types of data are transformed into vector representations. Each space type is optimized for specific data characteristics and similarity calculations.